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Prelude
Envelope and temporal fine
structure (TFS):
What's all the fuss?

Decomposing waveforms

e Spectral analysis ...

- Decomposes a wave into a sum of
sinusoids to give a spectrum

e This particular temporal analysis ...

— Decomposes a wave into the product of
two (usually) complicated waves known
as the envelope and the temporal fine
structure (TFS).
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Can work this backwards

0.5

Original Waveform o —MWM‘MWMWMMW“
_0_ =

0.5

Envelope M
0 |

X

Fine Structure

Time (ms)

http://research.meei.harvard.edu/Chimera/motivation.html 24 JAN 2010

Fine structure and envelope

e Temporal fine structure - relatively
fast — reflects spectral components
of sounds in the sound waveform,
and periodicity (in some definitions)

e envelope is the slower stuff

e think of all waves as being made by
multiplying an envelope against a
carrier
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Everyone agrees that ...

¢ 'Slowish’ envelopes (<30 Hz or so)
are really important for speech
perception

e Distinguish two features

— Envelope variations that are highly
correlated across frequency

- And those that are not.




Correlated and uncorrelated (across
frequency) envelope modulations
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Correlated envelopes in speech -
one source of cues to consonants
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Correlated envelopes in speech -
one source of cues to consonants
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Changing manner of articulation
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Spectral dynamics are encoded in

uncorrelated across-channel envelope

modulations
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Proof that slow envelopes are sufficient:
Noise-excited vocoding
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preserves envelopes, destroys TFS

Modulations < 10 Hz are most important
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So what’s missing?

e TFS said to be important for ...
— Perception of pitch
e Intonation and tone
—-'Glimpsing’ in noises that vary in level

¢ An ability that allows a listener to tolerate
higher levels of noises than would otherwise
be possible




A 3-way partition: typical for NHLs at

higher frequencies and Cls
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Periodicity in CIs encoded primarily as
changes in within channel modulation rate
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The representation of periodicity can be

messy!
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NHLs do use TFS for pitch
Types of Spectrogram
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*An auditory spectrogram looks like a wide-band spectrogram at high
frequencies and a narrow-band spectrogram at low frequencies (but
with more temporal structure).
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No glimpsing opportunities:
A steady-state background noise

But noises are typically not
steady ...
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Does TFS have a role in :
Summarise

glimpsing?
e CI users do not appear to be able to
glimpse,
e Nor do NHLs in simulation studies...

e So perhaps TFS (or some aspect of
periodicity) is necessary

e Waveforms (after any filter
bank/spectral analzsm) can be
decomposed into the product of
- An envelope (something slow)

e Or maybe two kinds of envelope
- A TFS (something fast)

e One limitation of CIs may be poor
access to TFS information

- Also sometimes used as a code word for

‘pitch perception’ hence necessary for
music.




The psychophysics of electrical
stimulation in the cochlea

Restricted dynamic range
means compression is crucial
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FIG. 9. Cumulative discriminable intensity steps across dynamic range and
the number of discriminable intensity steps per subject. Upper panel: Cu-
mulative Al {10 log(I+ AZ)—10TogiD} as a function of stimulus level in
percent dynamic range (%DR in dB), which were caleulated from the com-
posite Weber functions in Fig. 6. Curves for JPB and FXC were not plotted
because they overlapped with the curve for RFM. Lower panel: The total
number of discriminable intensity steps across dynamic range is given for
each of the eight subjects The total number of discriminable intensity steps
for normal acoustic hearing, calculated from Weber fractions reported by
Schroder er al. (1994), are shown for each of five frequencies within the
inset

Intensity jnds in electrical
(opposed to acoustic)
stimulation:

1) ‘miss’ Weber’s Law
more

2) are typically
smaller, but not by enough
to offset reduced dynamic
range.

CI users here had 7-45
discriminable steps in the
total dynamic range,
compared to = 83 in normal
hearing

Nelson et al. (1996) JASA

Acoustic/electrical loudness matches
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4 different stimulation frequencies
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LOUDNESS

LOUDNESS EST

ESTIMATE

Loudness
grows much
faster in
electrical
stimulation
(hyper-
recruitment!)

Temporal resolution:
gap detection

Gap Detection as a Function of Loudness
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Temporal resolution:
modulation detection (100 Hz)
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Relationships to performance with
speech

100
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Fig. 2. Correlaton berween phoneme identification (percent correct)
and subjects’ mean modulaton detecton chresholds (cakculated across

Fu 2002 Neu roRepOrt each subject’s entire dynamic range). Consonant scores and linear regres-
sion are shown by the filled circes and solid line. Viowel tcores and linear
regression are shown by the open drcles and dashed line,

Perceiving variations in amount of
activity across electrodes

e Essential for signaling of ...
- spectral shape

e Spectral shape is encoded by
relatively slow level changes across
electrodes

e Recall

- preservation of fast modulation rates
not necessary for intelligibility in noise-
vocoded speech

Slow level changes across channels
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Discrimination of rippled noise

0.25 ripples/octave ——Irvarisd find the maximum ripple
- — density at which it is possible

to discriminate ‘standard’
ripple noise from its inverted
version

1 ripplesiocctave

Relative magnitude (dB)

‘This test is hypothesized to
provide a direct measure of the
ability of listeners to perceive the
frequency locations of spectral
peaks in a broadband acoustic
signal.’

Frequency (kHz)

Henry et al. 2005 J Acoust Soc Am




Discrimination of rippled noi
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FIG. 2. Thresholds for spectral peak resolution for NH, HI, and CI subjects.
Error bars represent = one standard deviation.
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Relationships to performance with
speech in quiet

12 hvd by 20 talkers 16 VCVs by 4 talkers
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Statistical interlude:
The effect of outliers
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Relationships to performance with
speech in noise
SRT determined for selection of one of 12 spondees

In two-talker babble In steady-state noise
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Why is speech melody (voice
pitch) important to hear?

Contributes to speech intelligibility in all
languages
A good supplement to lipread information

May play an important role in separating
speech from background noises

Appears to play a more crucial role for the
young child developing language

FIC. 6. Spectral-ripple discrimination is correlated with speech perception in noise. The figure shows the relationship b.utwu.'n‘lhu spectral- [ J C ru Ci a I i n SO - Ca I Ied tone Ia n g u a g es
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Melody recognition

Percent correct

SN

rhythm

Figure 4. Melody identifica

no-rhythm

Conditions

tion scores from individual co-

chlear implant listeners with the original melodics. The
horizontal dashed line indicates the mean chance perfor-
mance. The vertical bars represent different subjects in each

condition.

12 songs familiar to most
people, synthesised with
and without natural

rhythm

Kong et al. (2004)

CI users classifying rise/fall
contours on diphthongs
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Tones in Mandarin Chinese

mother
hemp

horse

scold

STANDARDCHINESE ma

Chinese |[Tone |[Tone

Character |symbol |description

R% <7 high level

Jj_h_;i |4 high rising
) low

;% €| falling

% €|\ high falling

L)

How important is the loss of voice
pitch to understanding speech in
quiet?

e Eliminating tonal contrasts from speech
still leaves tone languages intelligible ...

e because no single acoustic feature is
indispensable in any language.

e Here, we trade off spectral resolution
against presence or absence of tone (voice
pitch variations/speech melody).




Vocoding as a way to trade off
spectral resolution and tone
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Experimental design

e Three tone languages
— Mandarin, Cantonese & Yoruba

e Two non-tonal languages
- English & Lithuanian

e Presented to groups of native
listeners varying ...
- numbers of channels (1, 2, 4, 8 and 16)
— presence or absence of informative tone




Examples of the stimuli
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Results for Mandarin (simulations)
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Conclusions

¢ Variations in fundamental frequency

contribute to intelligibility in all
languages ...

e but they are considerably more

important in tone languages

e Getting tone into cochlear implants

could be worth as much as a
doubling in the number of channels.

Melody coded as periodicity in rapid within-channel patterns
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The representation of melody can be messy!
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Perception of fundamental pitch in

complex waves is very poor

Lower harmonics cannot be resolved
as in normal hearing

Phase-locking seems ‘different’

Mis-match between place of
excitation and temporal pattern may
be important




